Oxidized high-density lipoprotein enhances endocrine disorders and ovarian damage in rats

氧化高密度脂蛋白增强大鼠内分泌失调和卵巢损伤

阅读:5
作者:Lu Wang, Hongjuan Li, Xiaoke Tang, Yupei Yang, Yuancui Xiang, Hui Zhang, Yali Wang

Abstract

Previous findings have highlighted the association between oxidized high-density lipoprotein (ox-HDL) and polycystic ovary syndrome (PCOS) development; however, the underlying mechanism remains unclear. Under such context, the present study aimed to investigate the mechanism underlying the involvement of ox-HDL in PCOS in relation to the p65/micro-RNA-34a (miR-34a)/FOS axis. PCOS rat models were established with the injection of dehydroepiandrosterone (6 mg/100 g body weight). Both PCOS-modelled rats and granulosa cells (GCs) were received treatment with ox-HDL in order to identify its role in PCOS. Next, apoptosis and viability of GCs were detected with the application of TdT-mediated dUTP Nick-End Labeling and flow cytometry and Cell counting kit-8, respectively. A series of assays were performed to determine the interaction among ox-HDL, p65, miR-34a, FOS and nuclear factor-κB (NF-κB). The results revealed high expression of ox-HDL in PCOS, and enhanced endocrine disorders and ovarian damage in rats. ox-HDL promoted apoptosis of GCs and decreased its viability. ox-HDL activated NF-κB pathway and induced p65 phosphorylation to promote miR-34a expression. miR-34a targeted and inhibited FOS expression. In conclusion, our findings suggested that ox-HDL promoted the activation of p65 and transcription of miR-34a, which stimulated apoptosis of GCs and inhibited expression of FOS, resulting in the overall acceleration of PCOS development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。