Comprehensive analysis of the expression and prognosis of YPEL family members in clear cell renal cell cancer

YPEL家族成员在透明细胞肾细胞癌中的表达及预后综合分析

阅读:8
作者:Lei Wang, Zhihua Zhang, Xiaochen Zhou, Jian Wu, Zhengdong Hong

Abstract

The Yippee‑like (YPEL) gene family is composed of five members encoding a protein containing a zinc finger‑like metal‑binding domain. Due to its structure and location in cells, this domain is considered to be involved in cell multiplication and numerous types of cancer. However, the relationship between the protein and the prognosis of clear cell renal cell carcinoma (ccRCC) remains unknown. In the present study, using pan‑cancer data from the updated public database, the expression and correlation of YPEL genes in 33 types of cancer was systematically and comprehensively analyzed. The prognostic value of YPEL genes was evaluated by survival and Cox regression analysis. Considering the relationship between the tumor microenvironment and stem cell indices, the function of superoxide dismutase was evaluated. Tumor Immune Assessment Resources (TIMER) and CIBERSORT algorithm analysis were used to evaluate the correlation between YPEL genes and tumor immune infiltrating cells (TIICs). Furthermore, knockdown experiments of YPEL genes were developed to explore their effects on ccRCC cell proliferation, migration and invasion in ccRCC cell lines. Members of the YPEL family were differentially expressed in ccRCC. Increased expression levels of YPEL1, YPEL2, and YPEL5 were associated with improved overall survival and disease‑specific survival. TIMER and CIBERSORT analyses showed remarkable correlation between YPEL family members and TIICs. More importantly, the results of Cell Counting Kit‑8, EdU and Transwell assays revealed that the multiplication, migration and invasion abilities of ccRCC cell lines could be promoted by knocking out YPEL1, YPEL2 and YPEL5. In conclusion, the present study provided new insight into the different roles of YPEL1, YPEL2 and YPEL5 in ccRCC, and the relationship between YPEL1 and immune infiltration may offer new options for future clinical treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。