Inactivation of maternal Hif-1α at mid-pregnancy causes placental defects and deficits in oxygen delivery to the fetal organs under hypoxic stress

妊娠中期母体 Hif-1α 失活会导致胎盘缺陷,并在缺氧应激下导致胎儿器官供氧不足

阅读:5
作者:Doreswamy Kenchegowda, Bryony Natale, Maria A Lemus, David R Natale, Steven A Fisher

Abstract

A critical transition occurs near mid-gestation of mammalian pregnancy. Prior to this transition, low concentrations of oxygen (hypoxia) signaling through Hypoxia Inducible Factor (HIF) functions as a morphogen for the placenta and fetal organs. Subsequently, functional coupling of the placenta and fetal cardiovascular system for oxygen (O2) transport is required to support the continued growth and development of the fetus. Here we tested the hypothesis that Hif-1α is required in maternal cells for placental morphogenesis and function. We used Tamoxifen-inducible Cre-Lox to inactivate Hif-1α in maternal tissues at E8.5 (MATcKO), and used ODD-Luciferase as a reporter of hypoxia in placenta and fetal tissues. MATcKO of Hif-1α reduced the number of uterine natural killer (uNK) cells and Tpbpa-positve trophoblast cells in the maternal decidua at E13.5 -15.5. There were dynamic changes in all three layers of E13.5-15.5 MATcKO placenta. Of note was the under-development of the labyrinth at E15.5 associated with reduced Ki67 and increased TUNEL staining consistent with reduced cell proliferation and increased apoptosis. Labyrinth defects were particularly evident in placentas connected to effectively HIF-1α heterozygous null embryos. MATcKO had no effect on basal ODD-Luciferase activity in fetal organs (heart, liver, brain) at any stage, but at E13.5-15.5 resulted in enhanced induction of the ODD-Luciferase hypoxia reporter when the dam's inspired O2 was reduced to 8% for 4 hours. MATcKO also slowed the growth after E13.5 of fetuses that were effectively heterozygous for Hif-1α, with most being non-viable at E15.5. The hearts of these E15.5 fetuses were abnormal with reduction in size, thickened epicardium and mesenchymal septum. We conclude that maternal HIF-1α is required for placentation including recruitment of uNK and trophoblast cells into the maternal decidua and other trophoblast cell behaviors. The placental defects render the fetus vulnerable to O2 deprivation after mid-gestation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。