Cell surface integrin α5ß1 clustering negatively regulates receptor tyrosine kinase signaling in colorectal cancer cells via glycogen synthase kinase 3

细胞表面整合素 α5β1 聚集通过糖原合酶激酶 3 负向调节结直肠癌细胞中的受体酪氨酸激酶信号传导

阅读:5
作者:Alina Starchenko, Ramona Graves-Deal, Douglas Brubaker, Cunxi Li, Yuping Yang, Bhuminder Singh, Robert J Coffey, Douglas A Lauffenburger

Abstract

As a key process within the tissue microenvironment, integrin signaling can influence cell functional responses to growth factor stimuli. We show here that clustering of integrin α5ß1 at the plasma membrane of colorectal cancer-derived epithelial cells modulates their ability to respond to stimulation by receptor tyrosine kinase (RTK)-activating growth factors EGF, NRG and HGF, through GSK3-mediated suppression of Akt pathway. We observed that integrin α5ß1 is lost from the membrane of poorly organized human colorectal tumors and that treatment with the integrin-clustering antibody P4G11 is sufficient to induce polarity in a mouse tumor xenograft model. While adding RTK growth factors (EGF, NRG and HGF) to polarized colorectal cancer cells induced invasion and loss of monolayer formation in 2D and 3D, this pathological behavior could be blocked by P4G11. Phosphorylation of ErbB family members as well as MET following EGF, NRG and HGF treatment was diminished in cells pretreated with P4G11. Focusing on EGFR, we found that blockade of integrin α5ß1 increased EGFR phosphorylation. Since activity of multiple downstream kinase pathways were altered by these various treatments, we employed computational machine learning techniques to ascertain the most important effects. Partial least-squares discriminant analysis identified GSK3 as a major regulator of EGFR pathway activities influenced by integrin α5ß1. Moreover, we used partial correlation analysis to examine signaling pathway crosstalk downstream of EGF stimulation and found that integrin α5ß1 acts as a negative regulator of the AKT signaling cascade downstream of EGFR, with GSK3 acting as a key mediator. We experimentally validated these computational inferences by confirming that blockade of GSK3 activity is sufficient to induce loss of polarity and increase of oncogenic signaling in the colonic epithelial cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。