Stress fiber strain recognition by the LIM protein testin is cryptic and mediated by RhoA

LIM 蛋白 testin 对应力纤维应变的识别是隐秘的,由 RhoA 介导

阅读:9
作者:Stefano Sala, Patrick W Oakes

Abstract

The actin cytoskeleton is a key regulator of mechanical processes in cells. The family of LIM domain proteins have recently emerged as important mechanoresponsive cytoskeletal elements capable of sensing strain in the actin cytoskeleton. The mechanisms regulating this mechanosensitive behavior, however, remain poorly understood. Here we show that the LIM domain protein testin is peculiar in that despite the full-length protein primarily appearing diffuse in the cytoplasm, the C-terminal LIM domains alone recognize focal adhesions and strained actin, while the N-terminal domains alone recognize stress fibers. Phosphorylation mutations in the dimerization regions of testin, however, reveal its mechanosensitivity and cause it to relocate to focal adhesions and sites of strain in the actin cytoskeleton. Finally, we demonstrate that activated RhoA causes testin to adorn stress fibers and become mechanosensitive. Together, our data show that testin's mechanoresponse is regulated in cells and provide new insights into LIM domain protein recognition of the actin cytoskeleton's mechanical state.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。