Hierarchical CRMP2 posttranslational modifications control NaV1.7 function

层次化的 CRMP2 翻译后修饰控制 NaV1.7 功能

阅读:10
作者:Erik T Dustrude, Aubin Moutal, Xiaofang Yang, Yuying Wang, May Khanna, Rajesh Khanna

Abstract

Voltage-gated sodium channels are crucial determinants of neuronal excitability and signaling. Trafficking of the voltage-gated sodium channel NaV1.7 is dysregulated in neuropathic pain. We identify a trafficking program for NaV1.7 driven by hierarchical interactions with posttranslationally modified versions of the binding partner collapsin response mediator protein 2 (CRMP2). The binding described between CRMP2 and NaV1.7 was enhanced by conjugation of CRMP2 with small ubiquitin-like modifier (SUMO) and further controlled by the phosphorylation status of CRMP2. We determined that CRMP2 SUMOylation is enhanced by prior phosphorylation by cyclin-dependent kinase 5 and antagonized by Fyn phosphorylation. As a consequence of CRMP2 loss of SUMOylation and binding to NaV1.7, the channel displays decreased membrane localization and current density, and reduces neuronal excitability. Preventing CRMP2 SUMOylation with a SUMO-impaired CRMP2-K374A mutant triggered NaV1.7 internalization in a clathrin-dependent manner involving the E3 ubiquitin ligase Nedd4-2 (neural precursor cell expressed developmentally down-regulated protein 4) and endocytosis adaptor proteins Numb and epidermal growth factor receptor pathway substrate 15. Collectively, our work shows that diverse modifications of CRMP2 cross-talk to control NaV1.7 activity and illustrate a general principle for regulation of NaV1.7.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。