Assembly checkpoint of the proteasome regulatory particle is activated by coordinated actions of proteasomal ATPase chaperones

蛋白酶体调节颗粒的组装检查点由蛋白酶体 ATPase 伴侣的协调作用激活

阅读:6
作者:Asrafun Nahar, Vladyslava Sokolova, Suganya Sekaran, James D Orth, Soyeon Park

Abstract

The proteasome holoenzyme regulates the cellular proteome via degrading most proteins. In its 19-subunit regulatory particle (RP), a heterohexameric ATPase enables protein degradation by injecting protein substrates into the core peptidase. RP assembly utilizes "checkpoints," where multiple dedicated chaperones bind to specific ATPase subunits and control the addition of other subunits. Here, we find that the RP assembly checkpoint relies on two common features of the chaperones. Individual chaperones can distinguish an RP, in which their cognate ATPase persists in the ATP-bound state. Chaperones then together modulate ATPase activity to facilitate RP subunit rearrangements for switching to an active, substrate-processing state in the resulting proteasome holoenzyme. Thus, chaperones may sense ATP binding and hydrolysis as a readout for the quality of the RP complex to generate a functional proteasome holoenzyme. Our findings provide a basis to potentially exploit the assembly checkpoints in situations with known deregulation of proteasomal ATPase chaperones.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。