Hypothalamic S1P/S1PR1 axis controls energy homeostasis in Middle-Aged Rodents: the reversal effects of physical exercise

下丘脑 S1P/S1PR1 轴控制中年啮齿动物的能量稳态:体育锻炼的逆转效应

阅读:6
作者:Vagner Ramon Rodrigues Silva, Carlos Kiyoshi Katashima, Carla G Bueno Silva, Luciene Lenhare, Thayana Oliveira Micheletti, Rafael Ludemann Camargo, Ana Carolina Ghezzi, Juliana Alves Camargo, Alexandre Moura Assis, Natalia Tobar, Joseane Morari, Daniela S Razolli, Leandro Pereira Moura, José Rodrigo

Abstract

Recently, we demonstrated that the hypothalamic S1PR1/STAT3 axis plays a critical role in the control of food consumption and energy expenditure in rodents. Here, we found that reduction of hypothalamic S1PR1 expression occurs in an age-dependent manner, and was associated with defective thermogenic signaling and weight gain. To address the physiological relevance of these findings, we investigated the effects of chronic and acute exercise on the hypothalamic S1PR1/STAT3 axis. Chronic exercise increased S1PR1 expression and STAT3 phosphorylation in the hypothalamus, restoring the anorexigenic and thermogenic signals in middle-aged mice. Acutely, exercise increased sphingosine-1-phosphate (S1P) levels in the cerebrospinal fluid (CSF) of young rats, whereas the administration of CSF from exercised young rats into the hypothalamus of middle-aged rats at rest was sufficient to reduce the food intake. Finally, the intracerebroventricular (ICV) administration of S1PR1 activators, including the bioactive lipid molecule S1P, and pharmacological S1PR1 activator, SEW2871, induced a potent STAT3 phosphorylation and anorexigenic response in middle-aged rats. Overall, these results suggest that hypothalamic S1PR1 is important for the maintenance of energy balance and provide new insights into the mechanism by which exercise controls the anorexigenic and thermogenic signals in the central nervous system during the aging process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。