Regulation of the Proliferation of Diabetic Vascular Endothelial Cells by Degrading Endothelial Cell Functional Genes with QKI-7

QKI-7降解内皮细胞功能基因调控糖尿病血管内皮细胞增殖

阅读:5
作者:Jinmei Xu, Qingsong Zhao, Xu Han, Zheqi Zhang, Jiahui Qu, Zhifeng Cheng

Background

Diabetes has emerged as one of the most serious and common chronic diseases of our times, causing life-threatening, disabling and costly complications, and reducing life expectancy. Studies have shown that cardiovascular morbidity is 1-3 times higher in diabetic patients than in normal people. There are many clinical and experimental data that prove that most of the complications of diabetes are related to atherosclerosis, which suggests that chronic hyperglycemia may induce an imbalance in the proliferation of vascular endothelial cells.

Conclusion

This research initially revealed the relevant molecular mechanism of QKI-7 leading to the excessive proliferation of endothelial cells in diabetic and atherosclerotic patients. In view of the role of QKI-7 in diabetic vascular complications, we provided a potential target for clinical diabetes treatment strategies in the future.

Methods

We chose blood samples and pluripotent stem cells and vascular endothelial cells of hospitalized patients with diabetes and diabetes atherosclerosis as research subjects. The expression levels of endothelial cell proliferation and genes related to endothelial cell proliferation were analyzed by RT-qPCR and Western blot, to study the influence of QKi-7 on the physiological state of endothelial cells. Through gene knockdown experiment, the effects of QKi-7 knockdown on functional genes and physiological functions of endothelial cells were analyzed. Finally, RNA immunoprecipitation was used to test the mutual effect among QKI-7 and the transcription level of functional genes, and the mRNA attenuation experiment proved that QKI-7 participated in the degradation process of functional genes.

Purpose

This study aims to explore the relationship between QKI-7 and vascular endothelial cell dysfunction and lay a foundation for further clarifying the molecular mechanism of endothelial cell damage in the process of diabetes with atherosclerosis.

Results

The findings of the RT-qPCR and Western blot tests revealed that QKI-7 was highly expressed in blood samples of diabetic patients and atherosclerosis as well as in endothelial cells induced by human pluripotent stem cells and human vascular endothelial cells after high-glucose treatment. Overexpression and high glucose of QKI-7 resulted in inhibiting expressed function genes CD144, NLGN1, and TSG6 and upregulation of inflammatory factors TNF-α, IL-1β, and IFN-γ, leading to excessive proliferation of endothelial cells. After QKI-7 gene knockdown, the expression levels of CD144, NLGN1, and TSG6, inflammatory factors TNF-α, IL-1β, and IFN-γ, and the cell proliferation rate all returned to normal levels. RNA immunoprecipitation showed that QKi-7 interacted with CD144, NLGN1, and TSG6 mRNAs and was involved in the transcriptional degradation of functional genes through their interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。