Reduced graphene oxide triggered epithelial-mesenchymal transition in A549 cells

还原氧化石墨烯引发 A549 细胞上皮-间质转化

阅读:6
作者:Yanyan Liao, Weiyi Wang, Xiaomei Huang, Yongyan Sun, Shen Tian, Peng Cai

Abstract

Graphene and its derivatives have exhibited wide potential applications in electronics, structural engineering and medicine. However, over utilization and untreated discharge may cause its distribution into environmental as well as biological chain, which raised the concerns of potential health risk as a potential hazard. Accumulating evidence has demonstrated that graphene derivatives induce lung fibrosis in vivo, so overall goal of this study was to explore the molecular mechanisms underlying the pulmonary fibrotic responses of reduced graphene oxide (rGO), using in vitro assays. Epithelial-mesenchymal transition (EMT) has profound effect on development of pulmonary fibrosis. Herein, we evaluated the EMT effect of rGO samples on A549 cells. Firstly, rGO penetrated through the A549 cells membrane into the cytosol by endocytosis and located in late endosome and/or lysosomes observed via transmission electron microscopy (TEM), and were well tolerant by cells. Secondly, rGO promoted the cell migration and invasion capacities at lower doses (below 10 μg/ml), but significantly inhibited the capacities at 20 μg/ml. Moreover, rGO-induced EMT were evidenced by decreased expression of epithelial marker like E-cadherin, β-catenin, Smad4 and increased expression of mesenchymal markers like Vimentin, VEGF-B, TWIST1. Based on our findings, it is supposed that rGO can effectively induce EMT through altering epithelial-mesenchymal transition markers in A549 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。