Intestinal epithelial cell-specific Raptor is essential for high fat diet-induced weight gain in mice

肠上皮细胞特异性 Raptor 对小鼠高脂饮食引起的体重增加至关重要

阅读:5
作者:Emily J Onufer, Shirli Tay, Lauren K Barron, Cathleen M Courtney, Brad W Warner, Jun Guo

Abstract

Mammalian target of rapamycin complex 1 (mTORC1) is a major regulator of cell growth and proliferation through fuel sensing. Systemic inhibition of mTOR as well as manipulation of its downstream products prevent diet-induced obesity. The purpose of this study was to determine the consequences of intestine-targeted mTORC1 inhibition. To attenuate intestinal mTORC1 activity, Villin-CreER mice were crossed with Raptorflox/flox mice, creating an intestinal-specific Raptor null line (i-Raptor -/-). Mice were fed a high fat diet (HFD) and compositional changes as well as food intake levels were assessed. Over a five-week time course, i-Raptor -/- mice consistently gained less body weight on a HFD compared to wildtype (WT) mice secondary to significantly reduced food intake. Importantly, the i-Raptor -/- mice did not appear to be malnourished, demonstrated by their preservation of lean body mass. i-Raptor -/- mice also maintained a normal metabolic profile without significant changes in triglyceride or fasting glucose levels. Further investigation revealed that GDF-15 mRNA expression was significantly enhanced in i-Raptor -/- enterocytes when refed with HFD after overnight starvation. In summary, our study establishes that loss of intestinal specific-mTORC1 is protective of the development of diet-induced obesity by reducing food intake without altering the metabolic profile.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。