Chondrocyte-derived extracellular matrix suppresses pathogenesis of human pterygium epithelial cells by blocking the NF-κB signaling pathways

软骨细胞衍生的细胞外基质通过阻断 NF-κB 信号通路抑制人翼状胬肉上皮细胞的发病机制

阅读:4
作者:Hyesook Lee, Minsup Lee, Yoonjin Lee, Soojin Choi, Jaewook Yang

Conclusions

CDECM was markedly effective in pathogenesis of hPECs. CDECM-suppressed migration of hPECs resulted from the inhibition of NF-κB activation and the improvement of Nrf2 induction by blocking the p38 MAPK and PKC signaling pathways.

Methods

Human conjunctival epithelial cells (hConECs) were used for identification of the effect of CDECM on normal conjunctiva. The effects of CDECM on proliferation were measured with the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(4-sulfenyl)-2H-tetrazolium (MTS) assay. Cell migration was evaluated according to the scratch wound closure assay and the Transwell invasion assay. Pterygium-related angiogenesis, inflammation, and extracellular matrix remodeling were analyzed with immunoblot and enzyme-linked immunosorbent assay (ELISA). The level of oxidative stress was detected with 2',7'-dichlorofluorescein diacetate (DCFH-DA). Protein kinase signaling was also analyzed with immunoblot.

Purpose

We previously have reported that chondrocyte-derived extracellular matrix (CDECM) suppresses the growth of pterygium in athymic nude mice. The aim of this study is to demonstrate the effect of CDECM on the pterygium epithelial cells and molecular signaling pathways in human primary pterygium epithelial cells (hPECs).

Results

CDECM did not show cytotoxicity until 1 mg/ml in the hConECs and hPECs. Cell migration and invasion were markedly reduced by treatment of 1 mg/ml CDECM in the hPECs to 34% of the control, but not in the hConECs. CDECM significantly downregulated matrix metallopeptidase 9 (MMP-9) and fibronectin and upregulated tissue inhibitor of metalloprotease 1 (TIMP-1) and -2 in the hPECs. Angiogenic factors, such as vascular endothelial growth factor (VEGF), antivascular cellular adhesion molecule 1 (VCAM-1), and cluster of differentiation 31 (CD31), and proinflammatory factors, including tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (Cox2), interleukin 6 (IL-6), and prostaglandin E2 (PGE2), were dramatically reduced by CDECM in the hPECs. Furthermore, CDECM significantly inhibited the generation of intracellular reactive oxygen species and the expression of NADPH oxidase subunits, Nox2 and p47phox. CDECM induced nuclear factor erythroid-2 related factor 2 (Nrf2) mediated-antioxidant enzyme heme oxygenase-1 (HO-1). CDECM also suppressed nuclear factor-kappa B (NF-κB) activation and the phosphorylation of p38 mitogen-activated protein kinase (MAPK), protein kinase C alpha (PKCα), and PKCθ. Conclusions: CDECM was markedly effective in pathogenesis of hPECs. CDECM-suppressed migration of hPECs resulted from the inhibition of NF-κB activation and the improvement of Nrf2 induction by blocking the p38 MAPK and PKC signaling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。