Induced Pluripotent Stem Cell-Derived Conditioned Medium Promotes Endogenous Leukemia Inhibitory Factor to Attenuate Endotoxin-Induced Acute Lung Injury

诱导性多能干细胞来源的条件培养基促进内源性白血病抑制因子减轻内毒素引起的急性肺损伤

阅读:9
作者:Vincent Yi-Fong Su, Shih-Hwa Chiou, Wei-Chih Chen, Wen-Kuang Yu, Huai-Hsuan Wu, Hao Chen, Kuang-Yao Yang

Abstract

The conditioned medium of induced pluripotent stem cells (iPSC-CM) can attenuate neutrophil recruitment and endothelial leakage of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Therefore, we investigated the mechanisms by which iPSC-CM regulate the interaction between neutrophils and the endothelium in ALI. Murine iPSCs (miPSCs) were delivered intravenously to male C57BL/6 mice (8-12 weeks old) 4 h after intratracheal LPS injection. A miPSC-derived conditioned medium (miPSC-CM) was delivered intravenously to mice after intratracheal LPS injection. DMSO-induced HL-60 cells (D-HL-60, neutrophil-like cells) and human umbilical vein endothelial cells (HUVECs) were used as in vitro models to assess the interaction of neutrophils and endothelial cells. miPSC-CM diminished the histopathological changes in the lungs and the neutrophil count in bronchoalveolar lavage fluids of ALI mice. miPSC-CM attenuated the expression of adhesion molecules in the lungs of ALI mice. Human iPSC conditioned medium (hiPSC-CM) reduced the expression of adhesion molecules in a HUVEC and D-HL-60 co-culture after LPS stimulation, which decreased the transendothelial migration (TEM) of D-HL-60. A human angiogenesis factors protein array revealed that leukemia inhibitory factor (LIF) was not detected in the absence of D-HL-60 and hiPSC-CM groups. hiPSC-CM significantly promoted the production of endogenous LIF in in vitro models. Administration of an anti-LIF antibody not only reversed the effect of iPSC-CM in ALI mice, but also blocked the effect of iPSC-CM on neutrophils TEM in in vitro models. However, a controlled IgG had no such effect. Our study demonstrated that iPSC-CM promoted endogenous LIF to inhibit neutrophils TEM and attenuate the severity of sepsis-induced ALI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。