Thermally-induced drift of A-site cations at solid-solid interface in physically paired lead halide perovskites

物理配对铅卤化物钙钛矿中固-固界面处 A 位阳离子的热致漂移

阅读:7
作者:Daniele T Cuzzupè #, Feray Ünlü #, Khan Lê, Robin Bernhardt, Michael Wilhelm, Matthias Grosch, Rene Weißing, Thomas Fischer, Paul H M van Loosdrecht, Sanjay Mathur

Abstract

The promise of hybrid organic-inorganic halide perovskite solar cells rests on their exceptional power conversion efficiency routinely exceeding 25% in laboratory scale devices. While the migration of halide ions in perovskite thin films has been extensively investigated, the understanding of cation diffusion remains elusive. In this study, a thermal migration of A‑site cations at the solid-solid interface, formed by two physically paired MAPbI3 and FAPbI3 perovskite thin films casted on FTO, is demonstrated through continuous annealing at comparably low temperature (100 °C). Diffusion of methylammonium (CH3NH3+, MA+) cations into the low‑symmetry yellow δ‑FAPbI3 phase triggers a transition from the yellow (δ) to black (α) phase evident in the distinctive color change and verified by shifts in absorption bands and X‑ray diffraction patterns. Intermixing of the A‑site cations MA+ and FA+ (CH(NH2)2+) occurred for both systems, α‑MAPbI3/δ‑FAPbI3 and α‑MAPbI3/α‑FAPbI3. The structural and compositional changes in both cases support a thermally activated ion drift unambiguously demonstrated through changes in the absorption and X-ray photoelectron spectra. Moreover, the physical contact annealing (PCA) leads to healing of defects and pinholes in α‑MAPbI3 thin films, which was correlated to longer recombination lifetimes in mixed MAxFA1-xPbI3 thin films obtained after PCA and probed by ultrafast transient absorption spectroscopy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。