MiR-195-5p facilitates the proliferation, migration, and invasion of human trophoblast cells by targeting FGF2

MiR-195-5p 通过靶向 FGF2 促进人类滋养层细胞的增殖、迁移和侵袭

阅读:11
作者:Dachun Zhou, Xiaoying Xu, Yuanlin Liu, Haiyun Liu, Xiaoyan Cheng, Yannan Gu, Yuanyuan Xu, Lingling Zhu

Background

Preeclampsia (PE), the most significant adverse exposure to cardiovascular risk during pregnancy, is one of the three major factors contributing to maternal and fetal mortality and the leading cause of preterm birth. Recently, various miRNAs have been reported to participate in PE occurrence and development. Nevertheless, the regulatory impact of miR-195-5p in PE is still indistinct.

Discussion

miR-195-5p was decreased in PE serum samples and cell lines, serving as a potential biomarker in protecting PE exacerbation by targeting FGF2.

Methods

Quantitative realtime-PCR (qRT-PCR), western blot, and fluorescence in situ hybridization (FISH) assay were performed to examine miR-195-5p and FGF2 expressions in PE serum samples or HTR-8/SVneo and TEV-1 cells. CCK8, flow cytometry, wound scratch, and transwell assays were conducted to determine cell viability, cycle, apoptosis, migration, and invasion. Dual-luciferase reporter assay unveiled the relationship between miR-195-5p and FGF2. Migration-related and invasion-related protein expressions were measured by western blot assay.

Results

miR-195-5p was prominently downregulated while FGF2 was increased in serum samples from PE patients and hypoxia-treated human trophoblast cells. FGF2 was predicted as a downstream target of miR-195-5p and targeted association was verified by dual-luciferase reporter assay. Functional experiments elaborated that miR-195-5p could facilitate trophoblast cell proliferation and metastasis but hinder cell cycle and apoptosis. Inversely, overexpressing of FGF2 could reverse the effects of miR-195-5p on trophoblast cell growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。