Sex-specific cannabinoid 1 receptors on GABAergic neurons in the ventrolateral periaqueductal gray mediate analgesia in mice

中脑腹外侧导水管周围灰质 GABA 能神经元上的性别特异性大麻素 1 受体介导小鼠镇痛

阅读:5
作者:Zhenhua Jiang, Qun Wang, Jianshuai Zhao, Jiajia Wang, You Li, Wei Dai, Xiao Zhang, Zongping Fang, Wugang Hou, Lize Xiong

Abstract

Sex differences in analgesic effects have gradually attracted public attention in preclinical and clinical studies. Both human and animal females are more sensitive to cannabinoid antinociception than males. Expression of the cannabinoid 1 receptor (CB1 R) and the function of the endocannabinoid system have been explored in both male and female mice and CB1 Rs in the ventrolateral periaqueductal gray (vlPAG) participate in antinociception. However, whether there are cell-type- and sex-specific patterns of vlPAG CB1 R expression that affect analgesia is unknown. In the current study, we either activated or inhibited CB1 Rs in the vlPAG and found that female mice produced stronger analgesia or developed more robust mechanical allodynia than males did. Specific deletion of GABAergic CB1 Rs in the vlPAG promoted stronger mechanical allodynia in female mice than that in male mice. However, no sex differences in cannabinoid antinociception were found following chemogenetic inhibition of GABAergic neurons. Using fluorescence in situ hybridization, we found that the sex difference in cannabinoid antinociception was due to females having higher expression of GABAergic CB1 Rs in the vlPAG than males. Furthermore, activation of CB1 Rs in the vlPAG significantly reduced the frequency of GABA-mediated spontaneous inhibitory postsynaptic currents recorded in vGlut2-tdTomato positive neurons in both sexes. This effect was greater in females than males and this reduction was closely related to CB1 R expression difference between sexes. Our work indicates that vlPAG GABAergic CB1 Rs modulate cannabinoid-mediated analgesia in a sex-specific manner, which may provide a potential explanation of sex difference found in the analgesic effect of cannabinoids.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。