Fetal pulmonary hypertension: dysregulated microRNA-34c-Notch1 axis contributes to impaired angiogenesis in an ovine model

胎儿肺动脉高压:失调的 microRNA-34c-Notch1 轴导致绵羊模型中的血管生成受损

阅读:5
作者:Devashis Mukherjee, Ujala Rana, Alison J Kriegel, Pengyuan Liu, Teresa Michalkiewicz, Girija Ganesh Konduri

Background

Persistent pulmonary hypertension of the newborn (PPHN) occurs when pulmonary vascular resistance (PVR) fails to decrease at birth. Decreased angiogenesis in the lung contributes to the persistence of high PVR at birth. MicroRNAs (miRNAs) regulate gene expression through transcript binding and degradation. They were implicated in dysregulated angiogenesis in cancer and cardiovascular disease.

Conclusion

We conclude that increased miR-34c in PPHN contributes to impaired angiogenesis by decreasing Notch1 expression in PAECs. Impact: Adds a novel mechanism for the regulation of angiogenesis in persistent pulmonary hypertension of the newborn. Identifies non-coding RNAs that are involved in the altered angiogenesis in PPHN and thus the potential for future studies to identify links between known pathways regulating angiogenesis. Provides preliminary data to conduct studies targeting miR34c expression in vivo in animal models of pulmonary hypertension to identify the mechanistic role of miR34c in angiogenesis in the lung vasculature.

Methods

We investigated whether altered miRNA levels contribute to impaired angiogenesis in PPHN. We used a fetal lamb model of PPHN induced by prenatal ductus arteriosus constriction and sham ligation as controls. We performed RNA sequencing of pulmonary artery endothelial cells (PAECs) isolated from control and PPHN lambs.

Results

We observed a differentially expressed miRNA profile in PPHN for organ development, cell-cell signaling, and cardiovascular function. MiR-34c was upregulated in PPHN PAECs compared to controls. Exogenous miR34c mimics decreased angiogenesis by control PAEC and anti-miR34c improved angiogenesis of PPHN PAEC in vitro. Notch1, a predicted target for miR-34c by bioinformatics, was decreased in PPHN PAECs, along with Notch1 downstream targets, Hey1 and Hes1. Exogenous miR-34c decreased Notch1 expression in control PAECs and anti-miR-34c restored Notch1 and Hes1 expression in PPHN PAECs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。