REST and Stress Resistance in the Aging Kidney

衰老肾脏的 REST 和抗压能力

阅读:6
作者:Sato Magassa, Liviu Aron, Clément Hoguin, Pierre Isnard, Fabiola Terzi, Christophe Legendre, Bruce A Yankner, Guillaume Canaud

Background

CKD is associated with the loss of functional nephr ons, leading to increased mechanical and metabolic stress in the remaining cells, particularly for cells constituting the filtration barrier, such as podocytes. The failure of podocytes to mount an adequate stress response can lead to further nephron loss and disease progression. However, the mechanisms that regulate this degenerative process in the kidney are unknown.

Conclusions

These results suggest REST protects the kidney from injury and degeneration during aging, with potentially important therapeutic implications.

Methods

We combined in vitro, in vivo, and organ-on-chip approaches to identify the RE1-silencing transcription factor (REST), a repressor of neuronal genes during embryonic development, as a central regulator of podocyte adaptation to injury and aging.

Results

Mice with a specific deletion of REST in podocytes exhibit albuminuria, podocyte apoptosis, and glomerulosclerosis during aging, and exhibit increased vulnerability to renal injury. This phenotype is mediated, in part, by the effects of REST on the podocyte cytoskeleton that promote resistance to mechanical stressors and augment podocyte survival. Finally, REST expression is upregulated in human podocytes during aging, consistent with a conserved mechanism of stress resistance. Conclusions: These results suggest REST protects the kidney from injury and degeneration during aging, with potentially important therapeutic implications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。