Small heterodimer partner negatively regulates C-X-C motif chemokine ligand 2 in hepatocytes during liver inflammation

小异二聚体伴侣在肝脏炎症期间对肝细胞中的 CXC 基序趋化因子配体 2 进行负向调节

阅读:4
作者:Jung-Ran Noh, Yong-Hoon Kim, Don-Kyu Kim, Jung Hwan Hwang, Kyoung-Shim Kim, Dong-Hee Choi, Seon-Jin Lee, Hee Gu Lee, Tae Geol Lee, Hong-Lei Weng, Steven Dooley, Hueng-Sik Choi, Chul-Ho Lee

Abstract

Recently, we reported that orphan nuclear receptor small heterodimer partner (SHP) is involved in neutrophil recruitment through the regulation of C-X-C motif chemokine ligand 2 (CXCL2) expression in a concanavalin A (ConA)-induced hepatitis model. In the present study, we examined the mechanisms underlying CXCL2 regulation by SHP and the cell types involved in liver inflammation. To this end, either Shp knockout (KO) or wild-type (WT) bone marrow cells were transferred into sublethally-irradiated WT (KO → WT or WT → WT) or Shp KO (KO → KO or WT → KO) recipients, followed by intravenous injection of ConA (20-30 mg/kg) 8 weeks later. The KO recipient groups showed higher ConA-induced lethality than the WT recipient groups. Accordingly, plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and inflammatory cytokine expressions were significantly higher in the KO recipients than in the WT recipients regardless of donor genotype. Massively increased hepatocyte death in KO recipients, as determined by H&E and TUNEL staining, was observed after ConA challenge. Bone marrow chimera experiments and in vitro chemotaxis assay also showed that SHP-deficient hepatocytes have an enhanced ability to recruit neutrophils to the injured liver. In vitro promoter assays showed that SHP is a negative regulator of Cxcl2 transcription by interfering with c-Jun binding to the AP-1 site within the Cxcl2 promoter. Collectively, SHP regulates Cxcl2 transcription in hepatocytes, playing a pivotal role in the recruitment of neutrophils. SHP-targeting strategies may represent alternative approaches to control fulminant hepatitis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。