A simple method for activating the platelets used in microfluidic platelet aggregation tests: Stirring-induced platelet activation

微流控血小板聚集测试中激活血小板的简单方法:搅拌诱导血小板活化

阅读:4
作者:Hoyoon Lee, Gyehyu Kim, Chaeseung Lim, ByoungKwon Lee, Sehyun Shin

Abstract

High-shear stimulation is well known as one of the key factors affecting platelet activation and aggregation, which can lead to the formation of a thrombus. In one of our previous studies, we introduced migration distance-based platelet function analysis in a microfluidic system. In this study, we set out to examine the effects of stirring on shear-induced platelet activation and aggregation in a chamber system by using a rotating stirrer. We found that the rotating stirrer caused not only rotational shear flow but also a strong radial secondary flow. The latter flow led to efficient mixing in the chamber. Moreover, the rotational flow led to the generation of shear stress, the magnitude of which can be controlled to activate the platelets. Activated platelets tend to aggregate themselves. The maximum platelet aggregation was observed at a critical shear rate of 3100 s-1, regardless of the stirrer shape. Furthermore, the time taken to attain maximum aggregation was significantly shortened when using a wide stirrer (30 s) instead of a narrow one (180 s). When using a flat stirrer, the non-uniform shear field in the chamber system was resolved with the radial secondary flow-induced mixing; thus, most of the platelets were homogenously activated. The stirring-induced platelet activation mechanism was experimentally confirmed in a microfluidic system for a platelet aggregation test while monitoring the migration distance until the microfluidic channel is occluded. Our findings indicate that the present system, consisting of a rotating stirrer and a confined chamber, provides effective shear stimulation for activating platelets and inducing platelet aggregates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。