Synthesis and in Vitro Characterization of Trehalose-Based Inhibitors of Mycobacterial Trehalose 6-Phosphate Phosphatases

海藻糖基分枝杆菌海藻糖 6-磷酸磷酸酶抑制剂的合成及体外表征

阅读:5
作者:Sunayana Kapil, Cecile Petit, Victoria N Drago, Donald R Ronning, Steven J Sucheck

Abstract

α,α'-Trehalose plays roles in the synthesis of several cell wall components involved in pathogenic mycobacteria virulence. Its absence in mammalian biochemistry makes trehalose-related biochemical processes potential targets for chemotherapy. The trehalose 6-phosphate synthase (TPS)/trehalose 6-phosphate phosphatase (TPP) pathway, also known as the OtsA/OtsB2 pathway, is the major pathway involved in the production of trehalose in Mycobacterium tuberculosis (Mtb). In addition, TPP is essential for Mtb survival. We describe the synthesis of α,α'-trehalose derivatives in the forms of the 6-phosphonic acid 4 (TMP), the 6-methylenephosphonic acid 5 (TEP), and the 6-N-phosphonamide 6 (TNP). These non-hydrolyzable substrate analogues of TPP were examined as inhibitors of Mtb, Mycobacterium lentiflavum (Mlt), and Mycobacterium triplex (Mtx) TPP. In all cases the compounds were most effective in inhibiting Mtx TPP, with TMP [IC50 =(288±32) μm] acting most strongly, followed by TNP [IC50 =(421±24) μm] and TEP [IC50 =(1959±261) μm]. The results also indicate significant differences in the analogue binding profile when comparing Mtb TPP, Mlt TPP, and Mtx TPP homologues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。