Dexamethasone suppresses JMJD3 gene activation via a putative negative glucocorticoid response element and maintains integrity of tight junctions in brain microvascular endothelial cells

地塞米松通过假定的负性糖皮质激素反应元件抑制 JMJD3 基因激活并维持脑微血管内皮细胞紧密连接的完整性

阅读:4
作者:Wonho Na, Jee Y Shin, Jee Y Lee, Sangyun Jeong, Won-Sun Kim, Tae Y Yune, Bong-Gun Ju

Abstract

The blood-brain barrier (BBB) exhibits a highly selective permeability to support the homeostasis of the central nervous system (CNS). The tight junctions in the BBB microvascular endothelial cells seal the paracellular space to prevent diffusion. Thus, disruption of tight junctions results in harmful effects in CNS diseases and injuries. It has recently been demonstrated that glucocorticoids have beneficial effects on maintaining tight junctions in both in vitro cell and in vivo animal models. In the present study, we found that dexamethasone suppresses the expression of JMJD3, a histone H3K27 demethylase, via the recruitment of glucocorticoid receptor α (GRα) and nuclear receptor co-repressor (N-CoR) to the negative glucocorticoid response element (nGRE) in the upstream region of JMJD3 gene in brain microvascular endothelial cells subjected to TNFα treatment. The decreased JMJD3 gene expression resulted in the suppression of MMP-2, MMP-3, and MMP-9 gene activation. Dexamethasone also activated the expression of the claudin 5 and occludin genes. Collectively, dexamethasone attenuated the disruption of the tight junctions in the brain microvascular endothelial cells subjected to TNFα treatment. Therefore, glucocorticoids may help to preserve the integrity of the tight junctions in the BBB via transcriptional and post-translational regulation following CNS diseases and injuries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。