Exosomes derived from schwann cells alleviate mitochondrial dysfunction and necroptosis after spinal cord injury via AMPK signaling pathway-mediated mitophagy

雪旺细胞来源的外泌体通过 AMPK 信号通路介导的线粒体自噬减轻脊髓损伤后的线粒体功能障碍和坏死性凋亡

阅读:5
作者:Bo Xu, Zezhu Zhou, Jiaqi Fang, Jianguang Wang, Kun Tao, Junjian Liu, Shuhao Liu

Abstract

Although spinal cord injury (SCI) represents a primary etiology of disability, currently, there are exist limited viable therapies modalities. Acquiring comprehension of the diverse pathways that drive mitochondrial aberration may facilitate the identification of noteworthy targets for ameliorating the deleterious consequences precipitated by SCI. Our objective was to determine the efficiency of exosomes produced from Schwann cells (SCDEs) in protecting against mitochondrial dysfunction. This evaluation was conducted using a rat model of compressed SCI and in vitro experiments involving rat pheochromocytoma cells (PC12) exposed to oxygen-glucose deprivation (OGD). The conducted experiments yielded evidence that SCDEs effectively mitigated oxidative stress (OS) and inflammation subsequent to SCI, while concurrently diminishing necroptosis. Subsequent in vitro inquiry assessed the impact of SCDEs on PC12, with a specific emphasis on mitochondrial functionality, necrotic cell prevalence, and mitophagy. The study findings revealed that SCDEs enhanced mitophagy in PC12 cells, leading to a decrease in the generation of reactive oxygen species (ROS) and inflammatory cytokines (CK) provoked by OGD-induced injury. This, in turn, mitigated mitochondrial dysfunction and necroptosis. Mechanistically, SCDEs facilitated cellular mitophagy through activation of the AMPK signaling pathway. In conclusion, our data strongly support the notion that SCDEs hold considerable promise as a therapeutic approach for managing SCI. Furthermore, our investigation serves to elucidate the pivotal role of AMPK-mediated mitophagy in reducing cell damage, thereby unveiling novel prospects for enhancing neuro-pathological outcomes following SCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。