Mice lacking α4 nicotinic acetylcholine receptors are protected against alcohol-associated liver injury

缺乏 α4 烟碱乙酰胆碱受体的小鼠可免受酒精相关肝损伤

阅读:9
作者:Walter H Watson, Jeffrey D Ritzenthaler, Edilson Torres-Gonzalez, Gavin E Arteel, Jesse Roman

Background

Chronic heavy alcohol consumption is a major risk factor for the development of liver steatosis, fibrosis, and cirrhosis, but the mechanisms by which alcohol causes liver damage remain incompletely elucidated. This group has reported that α4 nicotinic acetylcholine receptors (α4 nAChRs) act as sensors for alcohol in lung cells. This study tested the hypothesis that α4 nAChRs mediate the effects of alcohol in the liver.

Conclusion

Together, these observations support the conclusion that activation of α4 nAChRs by alcohol or one of its metabolites is one of the initial events promoting the accumulation of excess fat and expression of inflammatory mediators. Thus, α4 nAChRs may represent viable targets for intervention in chronic alcohol-related liver disease.

Methods

Expression of acetylcholine receptor subunits in mouse liver was determined by RNA sequencing (RNA-seq). α4 nAChR knockout (α4 KO) mice were generated in C57BL/6J mice by introducing a mutation encoding an early stop codon in exon 4 of Chrna4, the gene encoding the α4 subunit of the nAChR. The presence of the inactivating mutation was established by polymerase chain reaction and genomic sequencing, and the lack of α4 nAChR function was confirmed in primary fibroblasts isolated from the α4 KO mice. Wild-type (WT) and α4 KO mice were fed the Lieber-DeCarli diet (with 36% of calories from alcohol) or pair fed an isocaloric maltose-dextrin control diet for a 6-week period that included a ramping up phase of increasing dietary alcohol.

Results

Chrna4 was the most abundantly expressed nAChR subunit gene in mouse livers. After 6 weeks of alcohol exposure, WT mice had elevated serum transaminases and their livers showed increased fat accumulation, decreased Sirt1 protein levels, and accumulation of markers of oxidative stress and inflammation including Cyp2E1, Nos2, Sod1, Slc7a11, TNFα, and PAI1. All these responses to alcohol were either absent or significantly attenuated in α4 KO animals.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。