Revealing the spatio-phenotypic patterning of cells in healthy and tumor tissues with mLSR-3D and STAPL-3D

利用 mLSR-3D 和 STAPL-3D 揭示健康和肿瘤组织中细胞的空间表型模式

阅读:9
作者:Ravian L van Ineveld #, Michiel Kleinnijenhuis #, Maria Alieva, Sam de Blank, Mario Barrera Roman, Esmée J van Vliet, Clara Martínez Mir, Hannah R Johnson, Frank L Bos, Raimond Heukers, Susana M Chuva de Sousa Lopes, Jarno Drost, Johanna F Dekkers, Ellen J Wehrens, Anne C Rios

Abstract

Despite advances in three-dimensional (3D) imaging, it remains challenging to profile all the cells within a large 3D tissue, including the morphology and organization of the many cell types present. Here, we introduce eight-color, multispectral, large-scale single-cell resolution 3D (mLSR-3D) imaging and image analysis software for the parallelized, deep learning-based segmentation of large numbers of single cells in tissues, called segmentation analysis by parallelization of 3D datasets (STAPL-3D). Applying the method to pediatric Wilms tumor, we extract molecular, spatial and morphological features of millions of cells and reconstruct the tumor's spatio-phenotypic patterning. In situ population profiling and pseudotime ordering reveals a highly disorganized spatial pattern in Wilms tumor compared to healthy fetal kidney, yet cellular profiles closely resembling human fetal kidney cells could be observed. In addition, we identify previously unreported tumor-specific populations, uniquely characterized by their spatial embedding or morphological attributes. Our results demonstrate the use of combining mLSR-3D and STAPL-3D to generate a comprehensive cellular map of human tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。