Gut microbiota-derived D-serine protects against acute kidney injury

肠道微生物衍生的 D-丝氨酸可预防急性肾损伤

阅读:7
作者:Yusuke Nakade, Yasunori Iwata, Kengo Furuichi, Masashi Mita, Kenji Hamase, Ryuichi Konno, Taito Miyake, Norihiko Sakai, Shinji Kitajima, Tadashi Toyama, Yasuyuki Shinozaki, Akihiro Sagara, Taro Miyagawa, Akinori Hara, Miho Shimizu, Yasutaka Kamikawa, Kouichi Sato, Megumi Oshima, Shiori Yoneda-Nakaga

Abstract

Gut microbiota-derived metabolites play important roles in health and disease. D-amino acids and their L-forms are metabolites of gut microbiota with distinct functions. In this study, we show the pathophysiologic role of D-amino acids in association with gut microbiota in humans and mice with acute kidney injury (AKI). In a mouse kidney ischemia/reperfusion model, the gut microbiota protected against tubular injury. AKI-induced gut dysbiosis contributed to the altered metabolism of D-amino acids. Among the D-amino acids, only D-serine was detectable in the kidney. In injured kidneys, the activity of D-amino acid oxidase was decreased. Conversely, the activity of serine racemase was increased. The oral administration of D-serine mitigated the kidney injury in B6 mice and D-serine-depleted mice. D-serine suppressed hypoxia-induced tubular damage and promoted posthypoxic tubular cell proliferation. Finally, the D-serine levels in circulation were significantly correlated with the decrease in kidney function in AKI patients. These results demonstrate the renoprotective effects of gut-derived D-serine in AKI, shed light on the interactions between the gut microbiota and the kidney in both health and AKI, and highlight D-serine as a potential new therapeutic target and biomarker for AKI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。