Effects of intrathecal and intracerebroventricular microinjection of kaempferol on pain: possible mechanisms of action

鞘内和脑室内微量注射山奈酚对疼痛的影响:可能的作用机制

阅读:6
作者:Sajjad Jabbari, Maryam Bananej, Mohammad Zarei, Alireza Komaki, Ramin Hajikhani

Background and purpose

Kaempferol (KM), a flavonoid, has an anti-inflammatory and anticancer effect and prevents many metabolic diseases. Nonetheless, very few studies have been done on the antinociceptive effects of KM. This research aimed at assessing the involvement of opioids, gamma-aminobutyric acid (GABA) receptors, and inflammatory mediators in the antinociceptive effects of KM in male Wistar rats. Experimental approach: The intracerebroventricular and/or intrathecal administration of the compounds was done for examining their central impacts on the thermal and chemical pain by the tail-flick and formalin paw tests. For assessing the role of opioid and GABA receptors in the possible antinociceptive effects of KM, several antagonists were used. Also, a rotarod test was carried out for assessing motor performance. Findings/

Purpose

Kaempferol (KM), a flavonoid, has an anti-inflammatory and anticancer effect and prevents many metabolic diseases. Nonetheless, very few studies have been done on the antinociceptive effects of KM. This research aimed at assessing the involvement of opioids, gamma-aminobutyric acid (GABA) receptors, and inflammatory mediators in the antinociceptive effects of KM in male Wistar rats. Experimental approach: The intracerebroventricular and/or intrathecal administration of the compounds was done for examining their central impacts on the thermal and chemical pain by the tail-flick and formalin paw tests. For assessing the role of opioid and GABA receptors in the possible antinociceptive effects of KM, several antagonists were used. Also, a rotarod test was carried out for assessing motor performance. Findings/

Results

The intracerebroventricular and/or intrathecal microinjections of KM (40 μg/rat) had partially antinociceptive effects in the tail-flick test in rats (P < 0.05). In the formalin paw model, the intrathecal microinjection of KM had antinociceptive effects in phase 1 (20 and 40 μg/rat; P < 0.05 and P < 0.01, respectively) and phase 2 (20 and 40 μg/rat; P < 0.01 and P < 0.001, respectively). Using naloxonazine and/or bicuculline approved the involvement of opioid and GABA receptors in the central antinociceptive effects of KM, respectively. Moreover, KM reduced the expression levels of caspase 6, interleukin-1β, tumor necrosis factor-α, and interleukin-6. The antinociceptive effects of KM were not linked to variations in the locomotor activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。