FBXL5 Inactivation in Mouse Brain Induces Aberrant Proliferation of Neural Stem Progenitor Cells

小鼠脑内FBXL5失活诱导神经干祖细胞异常增殖

阅读:9
作者:Takayoshi Yamauchi, Masaaki Nishiyama, Toshiro Moroishi, Atsuki Kawamura, Keiichi I Nakayama

Abstract

FBXL5 is the substrate recognition subunit of an SCF-type ubiquitin ligase that serves as a master regulator of iron metabolism in mammalian cells. We previously showed that mice with systemic deficiency of FBXL5 fail to sense intracellular iron levels and die in utero at embryonic day 8.5 (E8.5) as a result of iron overload and subsequent oxidative stress. This early embryonic mortality has thus impeded study of the role of FBXL5 in brain development. We have now generated mice lacking FBXL5 specifically in nestin-expressing neural stem progenitor cells (NSPCs) in the brain. Unexpectedly, the mutant embryos manifested a progressive increase in the number of NSPCs and astroglia in the cerebral cortex. Stabilization of iron regulatory protein 2 (IRP2) as a result of FBXL5 deficiency led to accumulation of ferrous and ferric iron as well as to generation of reactive oxygen species. Pharmacological manipulation suggested that the phenotypes of FBXL5 deficiency are attributable to aberrant activation of mammalian target of rapamycin (mTOR) signaling. Our results thus show that FBXL5 contributes to regulation of NSPC proliferation during mammalian brain development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。