Transgenerational CRISPR-Cas9 Activity Facilitates Multiplex Gene Editing in Allopolyploid Wheat

跨代 CRISPR-Cas9 活性促进异源多倍体小麦的多重基因编辑

阅读:6
作者:Wei Wang, Qianli Pan, Fei He, Alina Akhunova, Shiaoman Chao, Harold Trick, Eduard Akhunov

Abstract

The CRISPR-Cas9-based multiplexed gene editing (MGE) provides a powerful method to modify multiple genomic regions simultaneously controlling different agronomic traits in crops. We applied the MGE construct built by combining the tandemly arrayed tRNA-gRNA units to generate heritable mutations in the TaGW2, TaLpx-1, and TaMLO genes of hexaploid wheat. The knockout mutations generated by this construct in all three homoeologous copies of one of the target genes, TaGW2, resulted in a substantial increase in seed size and thousand grain weight. We showed that the non-modified gRNA targets in the early generation plants can be edited by CRISPR-Cas9 in the following generations. Our results demonstrate that transgenerational gene editing activity can serve as the source of novel variation in the progeny of CRISPR-Cas9-expressing plants and suggest that the Cas9-inducible trait transfer for crop improvement can be achieved by crossing the plants expressing the gene editing constructs with the lines of interest.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。