ATF4 protects against sorafenib-induced cardiotoxicity by suppressing ferroptosis

ATF4 通过抑制铁死亡来预防索拉非尼引起的心脏毒性

阅读:8
作者:Hui Jiang, Cong Wang, An Zhang, Yufeng Li, Jianping Li, Zhan Li, Xin Yang, Yinglong Hou

Abstract

Sorafenib (SOR) is an effective chemotherapy drug for hepatocellular carcinoma, renal cell carcinoma, and differentiated thyroid carcinoma. However, a long-standing clinical issue associated with SOR use is an increased risk of cardiotoxicity, but the underlying mechanisms remain obscure. Here we report that ferroptosis of cardiomyocytes is responsible for SOR-induced cardiotoxicity. The specific ferroptosis inhibitor ferrostatin-1 and deferoxamine mesylate, an iron chelator, significantly alleviate SOR-induced cardiac damage. RNA-sequencing revealed that endoplasmic reticulum (ER) stress and the unfolded protein response were predominately activated, which might be attributed to the lipid reactive oxygen species-mediated perturbation of the ER. Activating transcription factor 4 (ATF4) is one of the most significantly up-regulated genes, knockdown of ATF4 exacerbates cardiomyocyte ferroptosis induced by SOR, while overexpression of ATF4 promotes cell survival. Mice with AAV-mediated ATF4 knockdown exhibit lipid peroxidation and more severe cardiomyopathy. Further experiments demonstrated that ATF4 exerts its protective role by elevating SLC7A11 expression, a transport subunit of system Xc-, which promotes cystine uptake and glutathione biosynthesis. The cardioprotective effect of ATF4 was diminished by SLC7A11 knockdown in cardiomyocytes subjected to SOR treatment. Taken together, these findings show that ferroptosis of cardiomyocytes is an important cause of SOR-related cardiotoxicity. ATF4 acts as a key regulator to promote cardiomyocytes survival by up-regulation of SLC7A11 and suppression of ferroptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。