High MEK/ERK signalling is a key regulator of diapause maintenance in the cotton bollworm, Helicoverpa armigera

高 MEK/ERK 信号是棉铃虫(Helicoverpa armigera)休眠维持的关键调节器

阅读:4
作者:X W Lin, Z Z Fan, Y H Liu, J Li, Q Ma, R H Yan

Abstract

MEK/ERK signalling has been identified as a key factor that terminates diapause in Sarcophaga crassipalpis and Bombyx mori. Paradoxically, high p-MEK/p-ERK signalling induces diapause in pupae of the moth Helicoverpa armigera; however, the regulatory mechanism is unknown. In the present study, we show that p-MEK and p-ERK are elevated in the brain of diapause-destined pupae and suppression of MEK/ERK activity terminates diapause progress. Reactive oxygen species (ROS) activate MEK/ERK signalling, causing large-scale phosphorylation of downstream proteins. The levels of ubiquitin-conjugated proteins are also significantly reduced when ROS or p-ERK level decreased. Moreover, terminated diapause progress by 20-hydroxyecdysone injection significantly decreases p-MEK, p-ERK and phospho-ribosomal S6 kinase levels, while phospho-MAPK substrates and ubiquitin-conjugated protein levels increase. Our data demonstrate that high MEK/ERK signalling mediated by ROS promotes diapause maintenance via increasing phosphorylation and degradation of downstream substrates. The results of this study may provide important information for understanding the regulatory mechanisms during insect diapause.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。