p66Shc-mediated hydrogen peroxide production impairs nephrogenesis causing reduction of number of glomeruli

p66Shc 介导的过氧化氢生成会损害肾脏生成,导致肾小球数量减少

阅读:4
作者:Bradley Miller, Oleg Palygin, Ashraf El-Meanawy, David L Mattson, Aron M Geurts, Alexander Staruschenko, Andrey Sorokin

Aims

Adaptor protein p66Shc, encoded by Shc1 gene, contributes to the pathogenesis of oxidative stress-related diseases. p66Shc ability to promote oxidative stress-related diseases requires phosphorylation of serine 36 residue (Ser36) and depends on translocation of p66Shc to the mitochondria. We tested the hypothesis that abnormal p66Shc-mediated reactive oxygen species (ROS) production could be critically involved in nephrons development during nephrogenesis. Main

Methods

We have generated unique mutant rats (termed p66Shc-Del), which express endogenous p66Shc with a 9-amino acid deletion, and lack regulatory Ser36. H2O2 renal production was measured by enzymatic microelectrode biosensors. Nephron numbers in 3-5 weeks old p66Shc-Del rats were quantified using the acid maceration method. Key findings: p66Shc-Del rats, as wild type salt sensitive rats, display increased mean arterial blood pressure following chronic exposure to a high salt diet. In contrast to wild type rats, p66Shc-Del rats display increased H2O2 renal production and are characterized by a reduction in renal function. The number of glomeruli is significantly reduced in adult p66Shc-Del rats. Significance: Since low nephron number is an established risk factor for kidney disease and hypertension in humans and rodents, our data suggest that H2O2 renal production, caused by irregular signaling of p66Shc, could be critical in regulating nephrogenesis and that abnormal p66Shc signaling negatively impacts kidney development and renal function by increasing susceptibility to diabetic nephropathy and hypertension-induced nephropathy.

Significance

Since low nephron number is an established risk factor for kidney disease and hypertension in humans and rodents, our data suggest that H2O2 renal production, caused by irregular signaling of p66Shc, could be critical in regulating nephrogenesis and that abnormal p66Shc signaling negatively impacts kidney development and renal function by increasing susceptibility to diabetic nephropathy and hypertension-induced nephropathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。