Ligand characterization of CYP4B1 isoforms modified for high-level expression in Escherichia coli and HepG2 cells

经修饰可在大肠杆菌和 HepG2 细胞中高水平表达的 CYP4B1 亚型的配体表征

阅读:4
作者:Katharina Roellecke, Vera D Jäger, Veselin H Gyurov, John P Kowalski, Stephanie Mielke, Allan E Rettie, Helmut Hanenberg, Constanze Wiek, Marco Girhard

Abstract

Human CYP4B1, a cytochrome P450 monooxygenase predominantly expressed in the lung, inefficiently metabolizes classical CYP4B1 substrates, such as the naturally occurring furan pro-toxin 4-ipomeanol (4-IPO). Highly active animal forms of the enzyme convert 4-IPO to reactive alkylating metabolite(s) that bind(s) to cellular macromolecules. By substitution of 13 amino acids, we restored the enzymatic activity of human CYP4B1 toward 4-IPO and this modified cDNA is potentially valuable as a suicide gene for adoptive T-cell therapies. In order to find novel pro-toxins, we tested numerous furan analogs in in vitro cell culture cytotoxicity assays by expressing the wild-type rabbit and variants of human CYP4B1 in human liver-derived HepG2 cells. To evaluate the CYP4B1 substrate specificities and furan analog catalysis, we optimized the N-terminal sequence of the CYP4B1 variants by modification/truncation and established their heterologous expression in Escherichia coli (yielding 70 and 800 nmol·l-1 of recombinant human and rabbit enzyme, respectively). Finally, spectral binding affinities and oxidative metabolism of the furan analogs by the purified recombinant CYP4B1 variants were analyzed: the naturally occurring perilla ketone was found to be the tightest binder to CYP4B1, but also the analog that was most extensively metabolized by oxidative processes to numerous non-reactive reaction products.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。