(Pro)renin Receptor Knockdown Attenuates Liver Fibrosis Through Inactivation of ERK/TGF-β1/SMAD3 Pathway

(前)肾素受体敲低通过抑制ERK/TGF-β1/SMAD3通路减轻肝纤维化

阅读:2
作者:Yun-Cheng Hsieh ,Kuei-Chuan Lee ,Hao-Jan Lei ,Keng-Hsin Lan ,Teh-Ia Huo ,Yi-Tsung Lin ,Che-Chang Chan ,Bernd Schnabl ,Yi-Hsiang Huang ,Ming-Chih Hou ,Han-Chieh Lin

Abstract

Background & aims: Activation of the (pro)renin receptor (PRR) up-regulates the expression of profibrotic genes in the kidney and heart. We aimed to investigate the role of PRR in hepatic fibrogenesis. Methods: Human hepatic PRR levels were measured in patients with or without liver fibrosis. PRR expression was analyzed in primary mouse hepatic stellate cells (HSCs). Experimental fibrosis was studied in thioacetamide (TAA)-treated or methionine choline-deficient (MCD) diet-fed C57BL/6 mice. Lentivirus-mediated PRR short hairpin RNA was used to knockdown hepatic PRR expression. Lentiviral vectors expressing PRR short hairpin RNA or complementary DNA from the α-smooth muscle actin promoter were used for myofibroblast-specific gene knockdown or overexpression. Results: PRR is up-regulated in human and mouse fibrotic livers, and in activated HSCs. Hepatic PRR knockdown reduced liver fibrosis by suppressing the activation of HSCs and expression of profibrotic genes in TAA or MCD diet-injured mice without significant changes in hepatic inflammation. Renin and prorenin increased the expression of PRR and production of TGF-β1 in human activated HSC Lieming Xu-2 cells, and knockdown of PRR inactivated Lieming Xu-2 cells with decreased production of transforming growth factor (TGF)-β1 and Mothers against decapentaplegic homolog 3 (Smad3) phosphorylation. Myofibroblast-specific PRR knockdown also attenuated liver fibrosis in TAA or MCD diet-injured mice. Mice with both myofibroblast-specific and whole-liver PRR knockdown showed down-regulation of the hepatic extracellular signal-regulated kinase (ERK)/TGF-β1/Smad3 pathway. Myofibroblast-specific PRR overexpression worsened TAA-induced liver fibrosis by up-regulating the ERK/TGF-β1/Smad3 pathway. Conclusions: PRR contributes to liver fibrosis and HSC activation, and its down-regulation attenuates liver fibrosis through inactivation of the ERK/TGF-β1/Smad3 pathway. Therefore, PRR is a promising therapeutic target for liver fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。