Th1 cytokines TNF-α and IFN-γ promote corticosteroid resistance in developing human airway smooth muscle

Th1 细胞因子 TNF-α 和 IFN-γ 促进人类气道平滑肌发育过程中皮质类固醇抵抗

阅读:7
作者:Rodney D Britt Jr, Michael A Thompson, Sarah Sasse, Christina M Pabelick, Anthony N Gerber, Y S Prakash

Abstract

Corticosteroids (CSs) are commonly used to manage wheezing and asthma in pediatric populations. Although corticosteroids are effective in alleviating airway diseases, some children with more moderate-severe asthma phenotypes show CS resistance and exhibit significant airflow obstruction, persistent inflammation, and more frequent exacerbations. Previous studies have demonstrated that Th1 cytokines, such as TNF-α and IFN-γ, promote CS resistance in adult human airway smooth muscle (ASM). In the present study, using a human fetal ASM cell model, we tested the hypothesis that TNF-α/IFN-γ induces CS resistance. In contrast to TNF-α or IFN-γ alone, the combination of TNF-α/IFN-γ blunted the ability of fluticasone propionate (FP) to reduce expression of the chemokines CCL5 and CXCL10 despite expression of key anti-inflammatory glucocorticoid receptor target genes being largely unaffected by TNF-α/IFN-γ. Expression of the NF-κB subunit p65 and phosphorylation of Stat1 were elevated in cells treated with TNF-α/IFN-γ, an effect that remained in the presence of FP. siRNA knockdown studies demonstrated the effects of TNF-α/IFN-γ on increased p65 are mediated by Stat1, a transcription factor activated by IFN-γ. Expression of TNFAIP3, a negative regulator of NF-κB activity, was not altered by TNF-α/IFN-γ. However, the effects of TNF-α/IFN-γ were partially reduced by overexpression of TNFAIP3 but did not influence p65 expression. Together, these data suggest that IFN-γ augments the effects of TNF-α on chemokines by enhancing expression of key inflammatory pathways in the presence of CS. Interactions between TNF-α- and IFN-γ-mediated pathways may promote inflammation in asthmatic children resistant to CSs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。