A Leptin Analog Locally Produced in the Brain Acts via a Conserved Neural Circuit to Modulate Obesity-Linked Behaviors in Drosophila

大脑局部产生的瘦素类似物通过保守的神经回路调节果蝇的肥胖相关行为

阅读:5
作者:Jennifer Beshel, Josh Dubnau, Yi Zhong

Abstract

Leptin, a typically adipose-derived "satiety hormone," has a well-established role in weight regulation. Here we describe a functionally conserved model of genetically induced obesity in Drosophila by manipulating the fly leptin analog unpaired 1 (upd1). Unexpectedly, cell-type-specific knockdown reveals upd1 in the brain, not the adipose tissue, mediates obesity-related traits. Disrupting brain-derived upd1 in flies leads to all the hallmarks of mammalian obesity: increased attraction to food cues, increased food intake, and increased weight. These effects are mediated by domeless receptors on neurons expressing Drosophila neuropeptide F, the orexigenic mammalian neuropeptide Y homolog. In vivo two-photon imaging reveals upd1 and domeless inhibit this hedonic signal in fed animals. Manipulations along this central circuit also create hypersensitivity to obesogenic conditions, emphasizing the critical interplay between biological predisposition and environment in overweight and obesity prevalence. We propose adipose- and brain-derived upd/leptin may control differing features of weight regulation through distinct neural circuits.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。