Single-Cell Transcriptomic Analysis Reveals a Hepatic Stellate Cell-Activation Roadmap and Myofibroblast Origin During Liver Fibrosis in Mice

单细胞转录组分析揭示小鼠肝纤维化过程中肝星状细胞活化路线图和肌成纤维细胞起源

阅读:5
作者:Wu Yang #, Hao He #, Tongtong Wang, Nan Su, Feng Zhang, Kai Jiang, Jing Zhu, Chonghe Zhang, Kongyan Niu, Luyue Wang, Xiaodong Yuan, Nan Liu, Lingjie Li, Wu Wei, Junhao Hu

Aims

HSCs and portal fibroblasts (PFs) are the major sources of collagen-producing myofibroblasts during liver fibrosis, depending on different etiologies. However, the mechanisms by which their dynamic gene expression directs the transition from the quiescent to the activated state-as well as their contributions to fibrotic myofibroblasts-remain unclear. Here, we analyze the activation of HSCs and PFs in CCL4 -induced and bile duct ligation-induced fibrosis mouse models, using single-cell RNA sequencing and lineage tracing. Approach and

Approach and results

We demonstrate that HSCs, rather than PFs, undergo dramatic transcriptomic changes, with the sequential activation of inflammatory, migrative, and extracellular matrix-producing programs. The data also reveal that HSCs are the exclusive source of myofibroblasts in CCL4 -treated liver, while PFs are the major source of myofibroblasts in early cholestatic liver fibrosis. Single-cell and lineage-tracing analysis also uncovers differential gene-expression features between HSCs and PFs; for example, nitric oxide receptor soluble guanylate cyclase is exclusively expressed in HSCs, but not in PFs. The soluble guanylate cyclase stimulator Riociguat potently reduced liver fibrosis in CCL4 -treated livers but showed no therapeutic efficacy in bile duct ligation livers. Conclusions: This study provides a transcriptional roadmap for the activation of HSCs during liver fibrosis and yields comprehensive evidence that the differential transcriptomic features of HSCs and PFs, along with their relative contributions to liver fibrosis of different etiologies, should be considered in developing effective antifibrotic therapeutic strategies.

Background and aims

HSCs and portal fibroblasts (PFs) are the major sources of collagen-producing myofibroblasts during liver fibrosis, depending on different etiologies. However, the mechanisms by which their dynamic gene expression directs the transition from the quiescent to the activated state-as well as their contributions to fibrotic myofibroblasts-remain unclear. Here, we analyze the activation of HSCs and PFs in CCL4 -induced and bile duct ligation-induced fibrosis mouse models, using single-cell RNA sequencing and lineage tracing. Approach and

Conclusions

This study provides a transcriptional roadmap for the activation of HSCs during liver fibrosis and yields comprehensive evidence that the differential transcriptomic features of HSCs and PFs, along with their relative contributions to liver fibrosis of different etiologies, should be considered in developing effective antifibrotic therapeutic strategies.

Results

We demonstrate that HSCs, rather than PFs, undergo dramatic transcriptomic changes, with the sequential activation of inflammatory, migrative, and extracellular matrix-producing programs. The data also reveal that HSCs are the exclusive source of myofibroblasts in CCL4 -treated liver, while PFs are the major source of myofibroblasts in early cholestatic liver fibrosis. Single-cell and lineage-tracing analysis also uncovers differential gene-expression features between HSCs and PFs; for example, nitric oxide receptor soluble guanylate cyclase is exclusively expressed in HSCs, but not in PFs. The soluble guanylate cyclase stimulator Riociguat potently reduced liver fibrosis in CCL4 -treated livers but showed no therapeutic efficacy in bile duct ligation livers. Conclusions: This study provides a transcriptional roadmap for the activation of HSCs during liver fibrosis and yields comprehensive evidence that the differential transcriptomic features of HSCs and PFs, along with their relative contributions to liver fibrosis of different etiologies, should be considered in developing effective antifibrotic therapeutic strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。