Aggregation-Induced Emission Photosensitizer Synergizes Photodynamic Therapy and the Inhibition of the NF-κB Signaling Pathway to Overcome Hypoxia in Breast Cancer

聚集诱导发光光敏剂协同光动力疗法和抑制 NF-κB 信号通路克服乳腺癌缺氧

阅读:6
作者:Jia Wang, Haisi Wu, Qianqian Zhao, Yifan Zou, Dan Ding, Haitao Yin, Huae Xu

Abstract

Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer, and TNBC patients often develop resistance to endocrine or molecular targeted therapy. Thus, a search for effective treatments is urgently required. Photodynamic therapy (PDT) has been verified to be a successful therapy for cancer. However, this treatment is oxygen-consuming, thus considerably limiting the PDT outcomes. The present study introduced a multistage drug delivery system to alleviate hypoxia and enhance PDT efficiency. Specifically, aggregation-induced emission luminogen (AIEgen) TPE-Py was first introduced to achieve PDT properties, and natural naphthohydroquinone dimer Rubioncolin C (RC), a blocker of mitochondria-associated oxidative phosphorylation (OXPHOS) and an NF-κB inhibitor, was applied to suppress the O2 consumption of OXPHOS and mitigate hypoxia thereafter. Enhanced PDT efficiency was validated by in vitro and in vivo TNBC models. In terms of the mechanism, AIEgen-based PDT synergized with RC could induce a fatal burst of reactive oxygen species (ROS) and ROS-mediated apoptosis. Moreover, this combination promoted the effectiveness of PDT by inhibiting the NF-κB signaling pathway. All of these results demonstrated that the administration system not only achieved a synergistic anti-TNBC effect but also expanded the clinical application of AIEgen-based PDT by overcoming hypoxia and inhibiting the NF-κB signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。