Bioenergetics in fibroblasts of patients with Huntington disease are associated with age at onset

亨廷顿病患者成纤维细胞的生物能量与发病年龄有关

阅读:4
作者:Sarah L Gardiner, Chiara Milanese, Merel W Boogaard, Ronald A M Buijsen, Marye Hogenboom, Raymund A C Roos, Pier G Mastroberardino, Willeke M C van Roon-Mom, N Ahmad Aziz

Conclusions

A less efficient bioenergetics profile was found in fibroblast cells from patients with Huntington disease with an earlier age at onset independent of mutant CAG repeat size. Thus, differences in bioenergetics could explain part of the residual variation in age at onset in Huntington disease.

Methods

For this study, we selected 9 pairs of patients with Huntington disease matched for mutant CAG repeat size and sex, but with a difference of at least 10 years in age at onset, using the Leiden Huntington disease database. From skin biopsies, we isolated fibroblasts in which we (1) quantified the ATP concentration before and after a hydrogen-peroxide challenge and (2) measured mitochondrial respiration and glycolysis in real time, using the Seahorse XF Extracellular Flux Analyzer XF24.

Objective

We aimed to assess whether differences in energy metabolism in fibroblast cell lines derived from patients with Huntington disease were associated with age at onset independent of the cytosine-adenine-guanine (CAG) repeat number in the mutant allele.

Results

The ATP concentration in fibroblasts was significantly lower in patients with Huntington disease with an earlier age at onset, independent of calendar age and disease duration. Maximal respiration, spare capacity, and respiration dependent on complex II activity, and indices of mitochondrial respiration were significantly lower in patients with Huntington disease with an earlier age at onset, again independent of calendar age and disease duration. Conclusions: A less efficient bioenergetics profile was found in fibroblast cells from patients with Huntington disease with an earlier age at onset independent of mutant CAG repeat size. Thus, differences in bioenergetics could explain part of the residual variation in age at onset in Huntington disease.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。