Automated detection of cancer cells in effusion specimens by DNA karyometry

通过 DNA 核型分析自动检测积液标本中的癌细胞

阅读:6
作者:Alfred H Böcking, David Friedrich, Dietrich Meyer-Ebrecht, Chenyan Zhu, Anna Feider, Stefan Biesterfeld

Background

The average sensitivity of conventional cytology for the identification of cancer cells in effusion specimens is only approximately 58%. DNA image cytometry (DNA-ICM), which exploits the DNA content of morphologically suspicious nuclei measured on digital images, has a sensitivity of up to 91% for the detection of cancer cells. However, when performed manually, to our knowledge to date, an expert needs approximately 60 minutes for the analysis of a single slide.

Conclusions

The authors have created and validated a computer-assisted bimodal karyometric approach for which both nuclear morphology and DNA are quantified from a Feulgen-stained slide. DNA karyometry thus increases the diagnostic accuracy and reduces the workload of an expert when compared with manual DNA-ICM.

Methods

In the current study, the authors present a novel method of supervised machine learning for the automated identification of morphologically suspicious mesothelial and epithelial nuclei in Feulgen-stained effusion specimens. The authors compared this with manual DNA-ICM and a gold standard cytological diagnosis for 121 cases. Furthermore, the authors retrospectively analyzed whether the amount of morphometrically abnormal mesothelial or epithelial nuclei detected by the digital classifier could be used as an additional diagnostic marker.

Results

The presented semiautomated DNA karyometric solution identified more diagnostically relevant abnormal nuclei compared with manual DNA-ICM, which led to a higher sensitivity (76.4% vs 68.5%) at a specificity of 100%. The ratio between digitally abnormal and all mesothelial nuclei was found to identify cancer cell-positive slides at 100% sensitivity and 70% specificity. The time effort for an expert therefore is reduced to the verification of a few nuclei with exceeding DNA content, which to our knowledge can be accomplished within 5 minutes. Conclusions: The authors have created and validated a computer-assisted bimodal karyometric approach for which both nuclear morphology and DNA are quantified from a Feulgen-stained slide. DNA karyometry thus increases the diagnostic accuracy and reduces the workload of an expert when compared with manual DNA-ICM.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。