Changes in processes downstream of the hypothalamus are associated with seasonal follicle development in a songbird, the dark-eyed junco (Junco hyemalis)

下丘脑下游过程的变化与鸣禽暗眼灯草鹀(Junco hyemalis)的季节性卵泡发育有关

阅读:4
作者:Katie B Needham, Christy Bergeon Burns, Jessica L Graham, Carolyn M Bauer, Jeffrey D Kittilson, Ellen D Ketterson, Thomas Hahn, Timothy J Greives

Abstract

Mechanisms related to seasonal reproductive timing in vertebrates have received far more study in males than in females, despite the fact that female timing decisions dictate when rearing of offspring will occur. Production and release of gonadotropin-releasing hormone (GnRH) by the hypothalamus stimulates the pituitary to secrete gonadotropins, initiating the beginning stages of gonadal recrudescence and production of the sex steroids, testosterone and estradiol, which are necessary to prime the liver for secretion of yolk precursors in breeding female birds. While stimulation by the hypothalamus can occur during the pre-breeding period, egg development itself is likely regulated downstream of the hypothalamus. We used GnRH challenges to examine variation in breeding-stage-specific patterns of pituitary and ovarian responsiveness in free-living female dark-eyed juncos (Junco hyemalis) and also examined the ovary and liver for variation in mRNA expression of candidate genes. Baseline LH levels increased during the transition from pre-breeding to egg-development, however no significant difference was observed in post-GnRH injection levels for LH or sex steroids (testosterone and estradiol). Interestingly, a stage by time-point interaction was observed, with post-GnRH LH levels increasing over baseline during the pre-breeding stage, but not during the egg-development stage. We observed a decrease in liver mRNA expression of estradiol receptor-alpha, and glucocorticoid and mineralocorticoid receptors and a decrease in glucocorticoid receptor expression levels in the ovary. A decline in FSH receptor expression across stages was also observed in the ovary. Combined, our data suggest seasonal variation in female's sensitivity to signals of HPG activity and energetic or stress signals. These data provide additional insight into the physiological mechanisms regulating onset of clutch initiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。