SOCS5 contributes to temozolomide resistance in glioblastoma by regulating Bcl-2-mediated autophagy

SOCS5 通过调节 Bcl-2 介导的自噬导致胶质母细胞瘤对替莫唑胺产生耐药性

阅读:3
作者:Jie Yu, Lin Han, Feng Yang, Mingliang Zhao, Hong Zhou, Linwang Hu

Abstract

Temozolomide (TMZ) is the primary chemotherapeutic drug for treating glioblastoma (GBM); however, the final clinical outcome is considerably limited by the poor response and resistance to TMZ. Although autophagy is thought to be associated with chemotherapy resistance and cancer cell survival, the precise molecular mechanisms underlying this process remain elusive. The suppressor of cytokine signaling (SOCS) family is widely distributed in vivo and exerts a range of effects on tumors; however, the expression pattern and role of SOCS in GBM remains unknown. In this study, we determined that high SOCS5 expression level was associated with poor prognosis and TMZ resistance in GBM. TMZ induced an increase in SOCS5 expression level and upregulated autophagy during the acquisition of drug resistance. The observed increase in the extent of autophagy was mediated by SOCS5. Mechanistically, SOCS5 enhances the transcription of Bcl-2. Knockdown of SOCS5 inhibited TMZ chemoresistance in GBM cells through the inhibition of Bcl-2 recruited autophagy; upregulation of Bcl-2 blocked this effect. In summary, our findings revealed the involvement and underlying mechanism of SOCS5 in TMZ resistance. SOCS5 plays a critical role in GBM chemoresistance and may serve as a novel prognostic marker and therapeutic target for chemotherapeutically treating drug-resistant GBM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。