HIF-2α promotes conversion to a stem cell phenotype and induces chemoresistance in breast cancer cells by activating Wnt and Notch pathways

HIF-2α 通过激活 Wnt 和 Notch 通路促进乳腺癌细胞向干细胞表型转化并诱导化学耐药性

阅读:6
作者:Yuanyuan Yan, Fangxiao Liu, Li Han, Lin Zhao, Jianjun Chen, Olufunmilayo I Olopade, Miao He, Minjie Wei

Background

Hypoxic tumor microenvironment and maintenance of stemness contribute to drug resistance in breast cancer. However, whether Hypoxia-inducible factor-2α (HIF-2α) in hypoxic tumor microenvironment mediates conversion to a stem cell phenotype and chemoresistance of breast tumors has not been elucidated.

Conclusion

In conclusion, HIF-2α promoted stem phenotype conversion and induced resistance to PTX by activating Wnt and Notch pathways.

Methods

The mRNA and protein expressions of HIF-1α, HIF-2α, Wnt and Notch pathway were determined using qRT-PCR and western blot. Cell viability and renew ability were assessed by MTT, Flow cytometric analysis and soft agar colony formation.

Results

In our study, acute hypoxia (6-12 h) briefly increased HIF-1α expression, while chronic hypoxia (48 h) continuously enhanced HIF-2α expression and induced the resistance of breast cancer cells to Paclitaxel (PTX). Furthermore, HIF-2α overexpression induced a stem cell phenotype, the resistance to PTX and enhanced protein expression of stem cell markers, c-Myc, OCT4 and Nanog. Most importantly, Wnt and Notch signaling, but not including Shh, pathways were both activated by HIF-2α overexpression. Dickkopf-1 (DKK-1), a Wnt pathway inhibitor, and L685,458, an inhibitor of the Notch pathway, reversed the resistance to PTX and stem phenotype conversion induced by HIF-2α overexpression. In addition, HIF-2α overexpression enhanced tumorigenicity and resistance of xenograft tumors to PTX, increased activation of the Wnt and Notch pathways and induced a stem cell phenotype in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。