Temozolomide-induced guanine mutations create exploitable vulnerabilities of guanine-rich DNA and RNA regions in drug-resistant gliomas

替莫唑胺诱导的鸟嘌呤突变导致耐药性胶质瘤中富含鸟嘌呤的 DNA 和 RNA 区域变得脆弱

阅读:5
作者:Deanna M Tiek, Beril Erdogdu, Roham Razaghi, Lu Jin, Norah Sadowski, Carla Alamillo-Ferrer, J Robert Hogg, Bassem R Haddad, David H Drewry, Carrow I Wells, Julie E Pickett, Xiao Song, Anshika Goenka, Bo Hu, Samuel A Goldlust, William J Zuercher, Mihaela Pertea, Winston Timp, Shi-Yuan Cheng, Rebecca

Abstract

Temozolomide (TMZ) is a chemotherapeutic agent that has been the first-line standard of care for the aggressive brain cancer glioblastoma (GBM) since 2005. Although initially beneficial, TMZ resistance is universal and second-line interventions are an unmet clinical need. Here, we took advantage of the known mechanism of action of TMZ to target guanines (G) and investigated G-rich G-quadruplex (G4) and splice site changes that occur upon TMZ resistance. We report that TMZ-resistant GBM has guanine mutations that disrupt the G-rich DNA G4s and splice sites that lead to deregulated alternative splicing. These alterations create vulnerabilities, which are selectively targeted by either the G4-stabilizing drug TMPyP4 or a novel splicing kinase inhibitor of cdc2-like kinase. Last, we show that the G4 and RNA binding protein EWSR1 aggregates in the cytoplasm in TMZ-resistant GBM cells and patient samples. Together, our findings provide insight into targetable vulnerabilities of TMZ-resistant GBM and present cytoplasmic EWSR1 as a putative biomarker.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。