Neurogenic effects of rotarod walking exercise in subventricular zone, subgranular zone, and substantia nigra in MPTP-induced Parkinson's disease mice

转棒步行运动对 MPTP 诱发的帕金森病小鼠脑室下区、颗粒下区和黑质的神经源性影响

阅读:7
作者:Yea-Hyun Leem, Jin-Sun Park, Jung-Eun Park, Do-Yeon Kim, Hee-Sun Kim

Abstract

Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease, and its incidence is predicted to increase worldwide. Striatal dopamine depletion caused by substantia nigra (SN) degeneration is a pathological hallmark of PD and is strongly associated with cardinal motor and non-motor symptoms. Previous studies have reported that exercise increases neuroplasticity and promotes neurorestoration by increasing neurotrophic factors and synaptic strength and stimulating neurogenesis in PD. In the present study, we found that rotarod walking exercise, a modality of motor skill learning training, improved locomotor disturbances and reduced nigrostriatal degeneration in the subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In addition, our exercise regimen improved MPTP-induced perturbation of adult neurogenesis in some areas of the brain, including the subventricular zone, subgranular zone, SN, and striatum. Moreover, rotarod walking activated the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and induced brain-derived neurotrophic factor (BDNF) expression in these regions. The results suggest that motor skill learning training using rotarod walking improves adult neurogenesis and restores motor performance by modulating the AMPK/BDNF pathway. Therefore, our findings provide evidence for neuroprotective effects and improved neuroplasticity in PD through motor skill learning training.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。