Static magnetic field regulates proliferation, migration, and differentiation of human dental pulp stem cells by MAPK pathway

静磁场通过MAPK通路调控人牙髓干细胞增殖、迁移和分化

阅读:7
作者:Jing Na #, Lingyu Zhang #, Lisha Zheng, Jingyi Jiang, Qiusheng Shi, Chiyu Li, Yubo Fan

Abstract

Magnetic materials are now commonly used in dental clinics. These materials generally produce a static magnetic field (SMF). While it is known that SMF can affect cells' behaviors such as proliferation, migration, and differentiation, the mechanisms underlying these effects are still unclear. Our study investigates the role of the mitogen-activated protein (MAP) kinase pathway in SMF-induced proliferation, migration, osteogenic/odontogenic differentiation, and mineralization in human dental pulp stem cells (DPSCs). Human DPSCs were exposed to SMF of 1 mT and the phosphorylated MAP kinases were detected by Western blot analysis. Three MAP kinases inhibitors were pre-cultured with DPSCs and exposed to SMF for 24 h. Cell viability was analyzed using Cell Counting Kit-8. Cell migration was tested by a wound healing assay. Osteogenic/odontogenic differentiation was detected by ALP staining assay, ALP and DSPP Western blot analysis. Mineralization was studied by alizarin red staining analysis. SMF activated phosphorylation of c-Jun N-terminal kinase (JNK), P38 and extracellular signal-regulated kinase (ERK). The inhibition of JNK, P38, and ERK signaling decreased SMF-induced proliferation and migration. ERK and P38 play more important roles in SMF-induced ALP staining and protein expression. JNK was vital for SMF-induced DSPP expression. JNK, P38, and ERK all involved in SMF-mediated mineralization. Our study demonstrated that the MAPK pathway regulated SMF-induced proliferation, migration, osteogenic/odontogenic differentiation, and mineralization in human DPSCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。