Manganese silicate nanospheres-incorporated hydrogels:starvation therapy and tissue regeneration

锰硅酸纳米球复合水凝胶:饥饿疗法与组织再生

阅读:8
作者:Hongshi Ma, Qingqing Yu, Yu Qu, Yufang Zhu, Chengtie Wu

Abstract

To prevent postoperative skin tumor recurrence and repair skin wound, a glucose oxidase (GOx)-loaded manganese silicate hollow nanospheres (MS HNSs)-incorporated alginate hydrogel (G/MS-SA) was constructed for starvation-photothermal therapy and skin tissue regeneration. The MS HNSs showed a photothermal conversion efficiency of 38.5%, and endowed composite hydrogels with satisfactory photothermal effect. Taking advantage of the catalytic activity of Mn ions, the composite hydrogels could decompose hydrogen peroxide (H2O2) into oxygen (O2), which can alleviate the problem of tumor hypoxia microenvironment and endow GOx with an ability to consume glucose in the presence of O2 for tumor starvation. Meanwhile, hyperthermia triggered by near infrared (NIR) irradiation could not only accelerate the reaction rate of H2O2 decomposition by MS HNSs and glucose consumption by GOx, but also ablate tumor cells. The anti-tumor results showed that synergistic effect of starvation-photothermal therapy led to the highest death rate of tumor cells among all groups, and its anti-tumor effect was obviously improved as compared with that of single photothermal treatment or starvation treatment. Interestingly, the introduction of MS HNSs into hydrogels could distinctly promote the epithelialization of the wound beds by releasing Mn ions as compared with the hydrogels without MS HNSs. It is expected that such a multifunctional platform with starvation-photothermal therapy will be promising for treating tumor-caused skin defects in combination of its regeneration bioactivity in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。