Tuning Myogenesis by Controlling Gelatin Hydrogel Properties through Hydrogen Peroxide-Mediated Cross-Linking and Degradation

通过过氧化氢介导的交联和降解控制明胶水凝胶性质来调节肌肉生成

阅读:5
作者:Wildan Mubarok, Kelum Chamara Manoj Lakmal Elvitigala, Shinji Sakai

Abstract

Engineering skeletal muscle tissue in vitro is important to study the mechanism of myogenesis, which is crucial for regenerating muscle cells. The physicochemical properties of the cellular microenvironment are known to govern various cell behaviours. Yet, most studies utilised synthetic materials to model the extracellular matrix that suffers from cytotoxicity to the cells. We have previously reported that the physicochemical property of hydrogels obtained from horseradish peroxidase (HRP)-catalysed cross-linking could be controlled by a simple adjustment to the exposure time to air containing H2O2. In this study, we evaluated the influence of physicochemical properties dynamics in the gelatin possessing phenol groups (Gelatin-Ph) hydrogel to regulate the myogenesis in vitro. We controlled the Young's modulus of the Gelatin-Ph hydrogel by tuning the air containing 16 ppm H2O2 exposure time for 15-60 min. Additionally, prolonged exposure to air containing H2O2 also induced Gelatin-Ph degradation. Myoblasts showed higher adhesion and myotube formation on stiff hydrogel (3.53 kPa) fabricated through 30 min of exposure to air containing H2O2 compared to those on softer hydrogel (0.77-2.79 kPa) fabricated through 15, 45, and 60 min of the exposure. These results demonstrate that the myogenesis can be tuned by changes in the physicochemical properties of Gelatin-Ph hydrogel mediated by H2O2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。