Ubiquitin-independent, Proteasome-mediated targeted degradation of KRAS in pancreatic adenocarcinoma cells using an engineered ornithine decarboxylase/antizyme system

利用工程化的鸟氨酸脱羧酶/抗酶系统,实现胰腺腺癌细胞中泛素独立的、蛋白酶体介导的 KRAS 靶向降解

阅读:7
作者:Yihui Ma, Jingjing Xu, Pei Huang, Xue Bai, Hanqing Gao

Abstract

The oncogene KRAS not only promotes the tumorigenesis of pancreatic cancers but also is required for the malignant progression and metastasis of these cancers. Many methods have been explored to influence the malignant biological behavior of these cancers by targeting mutant KRAS. The ornithine decarboxylase/antizyme (ODC/AZ) system is another protein degradation pathway that exists in nature. The formation of an ODC and protein substrate complex through direct combination can promote its degradation by the 26S proteasome without ubiquitination, and this process can be catalyzed by AZ. In this study, we designed and reconstructed a chimeric fusion protein (named RC-ODC). The engineered fusion protein RC-ODC was confirmed to interact with the mutant KRAS oncoprotein in a co-immunoprecipitation assay, and the introduction of both RC-ODC and AZ resulted in degradation of the exogenous and endogenous mutant KRAS oncoprotein at the post-translational level independent of ubiquitination in vitro. Along with a decreased KRAS level, suppression of PANC-1 cell proliferation was detected in vitro and in vivo, and meanwhile downregulation of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) was also observed. Targeted degradation of the KRAS oncoprotein through the ODC/AZ pathway at the post-translational level may reflect a more effective future therapeutic strategy for pancreatic cancer patients. © 2018 The Authors. IUBMB Life published by Wiley Periodicals,Inc. on behalf of International Union of Biochemistry and Molecular Biology, 71(1):57-65, 2019.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。