Pomalidomide Ameliorates H₂O₂-Induced Oxidative Stress Injury and Cell Death in Rat Primary Cortical Neuronal Cultures by Inducing Anti-Oxidative and Anti-Apoptosis Effects

泊马度胺通过诱导抗氧化和抗凋亡作用改善大鼠原代皮质神经元培养中 H₂O₂ 诱导的氧化应激损伤和细胞死亡

阅读:4
作者:Yan-Rou Tsai, Cheng-Fu Chang, Jing-Huei Lai, John Chung-Che Wu, Yen-Hua Chen, Shuo-Jhen Kang, Barry J Hoffer, David Tweedie, Weiming Luo, Nigel H Greig, Yung-Hsiao Chiang, Kai-Yun Chen

Abstract

Due to its high oxygen demand and abundance of peroxidation-susceptible lipid cells, the brain is particularly vulnerable to oxidative stress. Induced by a redox state imbalance involving either excessive generation of reactive oxygen species (ROS) or dysfunction of the antioxidant system, oxidative stress plays a central role in a common pathophysiology that underpins neuronal cell death in acute neurological disorders epitomized by stroke and chronic ones such as Alzheimer's disease. After cerebral ischemia, for example, inflammation bears a key responsibility in the development of permanent neurological damage. ROS are involved in the mechanism of post-ischemic inflammation. The activation of several inflammatory enzymes produces ROS, which subsequently suppress mitochondrial activity, leading to further tissue damage. Pomalidomide (POM) is a clinically available immunomodulatory and anti-inflammatory agent. Using H&sub2;O&sub2;-treated rat primary cortical neuronal cultures, we found POM displayed neuroprotective effects against oxidative stress and cell death that associated with changes in the nuclear factor erythroid derived 2/superoxide dismutase 2/catalase signaling pathway. POM also suppressed nuclear factor kappa-light-chain-enhancer (NF-κB) levels and significantly mitigated cortical neuronal apoptosis by regulating Bax, Cytochrome c and Poly (ADP-ribose) polymerase. In summary, POM exerted neuroprotective effects via its anti-oxidative and anti-inflammatory actions against H&sub2;O&sub2;-induced injury. POM consequently represents a potential therapeutic agent against brain damage and related disorders and warrants further evaluation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。